
 Mini-Reviews in Medicinal Chemistry, 2008, 8, 213-221 213

 1389-5575/08 $55.00+.00 © 2008 Bentham Science Publishers Ltd.

How the Parts Organize in the Whole? A Top-Down View of Molecular 
Descriptors and Properties for QSAR and Drug Design 

Ernesto Estrada*

Complex Systems Research Group, X-Ray Unit, RIAIDT, Edificio CACTUS, University of Santiago de Compostela, 

15782 Santiago de Compostela, Spain 

Abstract: Sometimes the complexity of a system, or the properties derived from it, do depend neither on the individual 
characteristics of the components of the system nor on the nature of the physical forces that hold them together. In such 
cases the properties derived from the “organization” of the system given by the connectivity of its elements can be deter-
minant for explaining the structure of such systems. Here we explore the necessity of accounting for these structural char-
acteristics in the molecular descriptors. We show that graph theory is the most appropriate mathematical theory to account 
for such molecular features. We review a method (TOPS-MODE) that is able to transform simple molecular descriptors, 
such as logP, polar surface area, molar refraction, charges, etc., into series of descriptors that account for the distribution
of these characteristics (hydrophobicity, polarity, steric effects, etc) across the molecule. We explain the mathematical and 
physical principles of the TOPS-MODE method and develop three examples covering the description and interpretation of 
skin sensitisation of chemicals, chromosome aberration produced by organic molecules and drug binding to human serum 
albumin.  
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1. INTRODUCTION 

 A simple observation of the world gives us the clear idea 
that everything is made up of parts. Then, it is reasonably to 
try to figure out what an object does by figuring out what the 
parts do. In theoretical chemistry, bottom-up approaches are 
generally used to calculate molecular properties [1]. Usually, 
the contributions of atoms, bonds and molecular regions to a 
property are estimated by means of the quantum mechanical 
approaches to chemistry. The approach is essentially a bottom-
up one [2] where the individual base elements of the system, 
e.g., atomic orbitals, are first specified in great detail. Then, 
these elements are linked together forming larger subsystems, 
e.g., molecular orbitals, which then in turn are linked, until 
the complete top-level system is formed. Other molecular 
descriptors used to study quantitative structure-property 
(QSPR) and structure-activity (QSAR) relationships also 
follow a bottom-up approach. For instance, substituent cons-
tants like the ones used in the Hansch or the Free-Wilson 
approaches to QSAR start by a detailed description of the 
parts to build the whole molecular property [3]. The risk in 
using a bottom-up approach in science is that the “continual 
breaking down of the parts into their components parts 
progresses until we forget what it was we were trying to do 
in the first place!” [4].

 On the other hand, there are properties that do not depend 
on the nature of the molecular components but on the way 
these components are organized in the molecule. As a matter 
of example we can consider the number of isomers that exist 
with a given chemical formula. This question, which is rele- 
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vant to combinatorial chemistry [5], cannot be responded by 
using a detailed description of the atoms or bonds in the 
molecules. The reason is that it depends on the way the at-
oms and bonds are combinatorially disposed in the molecule 
and not on their physical or chemical nature. The same phi-
losophy can be applied to any property/activity. In general 
(some exceptions are mentioned below), we are able to pre-
dict the biological and toxicological activity of a molecule, 
but we can say very little about the way in which the mo-
lecular parts contribute to this global activity or property. 
The reason is simply because we commonly use bottom-up 
approaches to predict properties/activities. However, it is 
possible to use an approach which consists in formulating a 
general overview of the system, which specifies, but not 
details, any first-level subsystems. Then, each subsystem is 
refined to increase their details until the entire specification 
is reduced to base elements. This strategy constitutes the top-
down approach to science [2, 6]. The question about the ex-
istence of any general mathematical approach to account for 
a top-down view of the molecular structure in which we can 
analyze how the atoms/bonds organize in the molecule is 
important and necessary. This mathematical theory is ex-
pected to complement, more than rivaling, with quantum or 
extrathermodynamic (Hansch, Free-Wilson, etc.) views of 
molecular structure. Physicists have started to understand the 
importance of these organizational principles in the function-
ing of complex systems beyond the study of the nature of the 
elements that compose them. Stephen Hawkins has said that 
“the next century will be the century of complexity” [7]. This 
of course begs the question: How Chemistry is positioned to 
apply these ideas to the study of molecular properties?  

2. A SHORT LESSON FROM COMPLEXITY 

 The aim of a complexity theory is the discovery of the 
laws of form that govern any collection of interacting parts, 
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such as atoms and molecules, organisms like bacteria or 
mammals, individuals in a society, traders in a stock market, 
and even nations, regardless of what they are made of [8]. 
Consequently, some of the deepest truths about such systems 
can be truths about the organization of their components, 
rather than about what kinds of things make up such compo-
nents and how they behave individually. This level of orga-
nization is represented through complex networks in which 
components are dots connected by lines that represent the 
interconnection between them [6, 8]. 

 In recent years there has been a renaissance of the study 
of networks in physics and mathematics which has produced 
a number of new findings, documenting the power of net-
works in everything from business economy to drug discov-
ery [6, 8-10]. In this context Barabási has cleverly stated that 
“networks have become the X-ray machines of our connect-
edness, diagnosing the cell or the Web with the same ease”
[10]. This situation is in contrast with that existing in Chem-
istry, the scientific discipline which first welcomed the de-
velopment and application of graph and network theory, 
where bottom-up approaches to molecular structure are still 
preferred. These approaches are well justified if we are inter-
ested in studying the nature of the chemical bonds or in mo-
lecular properties which are derived from it. However, if we 
are interested in the study of chemical properties derived 
from the connectivity of atoms in the molecule, we necessar-
ily have to study their graph theoretical (network) features 
using a top-down approach.  

3. IS A TOP-DOWN VIEW OF MOLECULAR DE-
SCRIPTORS NECESSARY? 

 Despite there are methods like CoMFA [11] and Catalyst 
(available at www.accelerys.com) that permit to obtain maps 
of the molecular regions contributing to a given property or 
activity, most of the molecular descriptors existing today 
measure global structural properties more than the distribu-
tion of such properties across the molecular structure [12]. 
For instance, partition coefficients or any of the descriptors 
quantifying hydrophobic properties of molecules do not 
gives any information about how hydrophobicity is distrib-
uted across the molecule. Net polar surface area does not 
indicate whether polarity is concentrated or spread across the 
molecule, and the situation is repeated for most of the mo-
lecular descriptors currently in use. This situation obligates 
in many cases the use of molecular descriptors in an indis-
criminate way to obtain statistically significant QSPR/QSAR 
models. In such cases some descriptors are used to compen-
sate the lack of information shown by the others, giving rise 
to very convoluted models in which information useful to 
chemists is encrypted in a way that makes the model useless.  

 It could be desirable to have a sort of map for the distri-
bution of such molecular descriptors across the molecule in 
which we can “visualize” the contributions of different mo-
lecular regions to the global descriptor or property we are 
studying. The reason for the existence of molecular descrip-
tors is their usability in describing other experimental prop-
erties, such as physicochemical or biological ones. Conse-
quently, the main question here is whether these maps illus-
trating a descriptor’s distribution across a molecule are nec-
essary for describing other properties through quantitative 

relations. It is obvious that these “distributions across the 
molecule” depend on the connectivity pattern of such proper-
ties in the molecule. It is known that through the study of 
topological properties of networks we can identify which 
groups in a “social” network are more at risk of spreading an 
infection or which groups of Internet nodes are most suscep-
tible to an attack [6, 8-10]. In a similar way we can identify 
which molecular regions have more or less “concentration” 
of any molecular property/descriptor. This approach is de-
finitively a top-down approach to molecular descriptors in 
which we start by defining some global properties of the 
molecules and then going down to “see” how they organize 
at atomic level. 

 Consider for instance, the aquatic toxicity of chloroben-
zenes, which is believed to depend almost exclusively on 
their hydrophobicity [13]. It is known that chlorobenzene is 
less toxic to Daphnia magna than dichlorobenzenes, these 
are less toxic than trichlorobenzenes and so forth. Penta-
chlorobenzene is 50 times more toxic to Daphnia magna
than chlorobenzene. A QSAR model obtained by Marchini et
al. [13] show this general trend for seven arylbenzenes: log 
(1/EC50) = 0.71 (log POW)-3.53. However, what happens if 
we analyze this trend in more detail by using a looking 
glass? We can see that, for instance, trichlorobenzenes 
(TCB) do not follow this expected general trend. 1,2,4-TCB 
and 1,2,3-TCB have similar logP values determined experi-
mentally (4.02 and 4.05, respectively). 1,3,5-TCB has a logP 
value slightly higher than its isomers (4.19). However, 1,2,3-
TCB is almost three times more toxic than 1,2,4- and almost 
seven times more toxic than 1,3,5-TCB. In fact, 1,2,3-TCB is 
as toxic as 1,2,3,4-tetrachlorobenzene, in spite of the fact that 
the last is significantly more hydrophobic than the first.  

 A close look at this trend of toxicity, 1,2,3-TCB > 1,2,4-
TCB > 1,3,5-TCB, give us insights about what is happening. 
In 1,2,3-TCB the hydrophobicity is “concentrated” in a 
smaller molecular region than in 1,2,4-TCB and 1,3,5-TCB, 
where the hydrophobic groups, i.e., chlorines, are distributed 
across the molecule. Then a top-down approach that permits 
to account for the distribution of hydrophobicity across the 
molecule is necessary to explain these observed facts.  

4. A TOP-DOWN APPROACH TO HYDROPHOBIC-
ITY 

 The logarithm of the n-octanol/water partition coeffi-
cient, logP, is considered a fundamental molecular descriptor 
in QSAR [14]. It accounts for the capacity of a molecule of 
distributing between an aqueous and lipid phase. In fact, 
until 2001, 965 out of 2129 QSARs for purified enzymes or 
more or less purified receptors, and 300 out of 709 QSARs 
for receptors contain hydrophobicity descriptors [15]. It is 
also very significant that 2937 out of 3677 QSARs devel-
oped for more complex systems, from organelles to whole 
organisms, also contain hydrophobicity terms [15].  

 In order to account for hydrophobicity across a molecule 
lets consider the following approach. First, let represents a 
molecule by means of a bond adjacency matrix, B [16] (see 
Box 1). Now, let considers the particular case of a “hydro-
phobicity bond matrix”, B(H), where the main diagonal en-
tries Bii  are the contribution of this bond to the partition 
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coefficient n-octanol/water of the molecule. Then, obviously 
we have that the partition coefficient is the simple sum of the 

diagonal entries of this matrix, logP = Bii
i=1

N

. The sum of 

the diagonal entries of a matrix is known in mathematics as 
the spectral moment because it is also equal to the sum of the 
eigenvalues of such matrix. Thus we have that logP = ,

1 H( ) = j H( )
j=1

N

 where 
j H( )  are the eigenvalues of 

B(H) (see Box 1). As we already know this first moment of 
the hydrophobicity matrix does not reflect the distribution of 
the hydrophobicity across the molecule. But, what about the 

higher order moments, 
k>1 H( ) ? The hydrophobicity mo-

ment of order k  are defined as in Box 1. In Fig. 1 we illus-
trate how the higher order moments account for the distribu-
tion of the hydrophobicity in the three TCB isomers. In order 
to account for the total effect of higher moments we use the 
following formula which gives the largest weight to the 
lower moments and gives lower weights to the higher mo-
ments [17], and we introduce a “hydrophobicity descriptor” 
or HD for brief 

HD = k
k!

k=1

=
1

N
e j H( )

j=1

N

          (1) 

Box 1. 

Box 1 | Spectral moments of the bond matrix 
The bond adjacency matrix is a square symmetric matrix whose non-diagonal entries are 
zeroes or ones as the corresponding bonds are adjacent or not, respectively. Two bonds 
are adjacent if they share a common atom. The bond matrix corresponds to the adjacency 
matrix of the line graph of the graph. A line graph is that built by representing any bond of 
the graph as a vertex in the line graph. Two vertices are adjacent in the line graph if the 
corresponding bonds are adjacent in the graph. 

 
 

 

  

Graph with labeled bonds Line graph Bond matrix 
The kth spectral moment of the bond matrix, �k, corresponds to the trace of the kth power 
of the matrix. The trace is the sum of the diagonal elements 
of the matrix. For instance, for calculating the second 
moment we square the matrix and then sum the diagonal 
entries of this matrix giving the second spectral moment, 
which in this case is equal to 14. Each of the diagonal 
entries of this matrix are the bond contributions to the 
second spectral moment, for instance, bonds 1, 2 and 4 
have contributions to the second moment of 2, while bond 
3 has a contribution of 4. These contributions represent the 
number of pairs of adjacent bonds in which the 
corresponding bond participates. The relationship between 
spectral moments  of the bond matrix and the spectrum of a graph with m bonds, i.e., the 
set of its eigenvalues, �i, is given by the following expression: 
 
 
 

Eigenvalues are a special set of scalars associated with the matrix B. If there is a vector 

 

such that 

for some scalar �, then � is called an eigenvalue of B with corresponding (right) 
eigenvector v.  
 

� � � ��
�

��
m

i

k

i

k

k Tr
1

�� B

1

2 3

4
5

6

1

2
3

4

5 6

�
�
�
�
�
�
�
�

	




�
�
�
�
�
�
�
�

�



�

010000

101100

010100

011011

000101

000110

B

vBv ��

0��� n
v



216    Mini-Reviews in Medicinal Chemistry, 2008, Vol. 8, No. 3 Ernesto Estrada 

 It is easy to see that the molecular HD can be expressed 

in terms of bond contributions, HD = HD i( )
i=1

N

, where the 

bond contributions are given by the following expression 

(see Box 2) HD i( ) =
1

N j i( )
2
e j H( )

j=1

N

, where j i( )  is 

the i th component of the eigenvector associated with the 
j th eigenvalue of the bond matrix with hydrophobicity pa-

rameters in the main diagonal (see Box 1). 

 The values of HD i( )  are represented graphically in the 
Fig. 1 for the three isomers under analysis. It can be seen that 
1,2,3-TCB has a great “concentration” of hydrophobicity 
around chlorine atoms. In particular, the bonds in the ben-
zene ring which are between two C-Cl bonds have the high-
est hydrophobic contribution. This molecule resembles a 
dipole, e.g., a “hydrophobic dipole”, having a pole of high 
hydrophobicity and another less hydrophobic. In 1,2,4-TCB 
the hydrophobicity is distributed in a more homogeneous 
way across the molecule with the region around the two 
chlorines in ortho position still having a significantly higher 
contribution than the rest of the molecule. However, in 1,3,5-
TCB this distribution is symmetrical across the molecule 
with each bond having approximately the same hydrophobic-
ity. The values of HD also reflect this trend as can be seen in 
the Fig. 1. These values follow the ecotoxicological profile 
observed experimentally [13] for these compounds which are 
also given in this figure. This simple example begs the ques-
tion about whether we can extend this idea to any other 
property/activity. 

5. FROM GLOBAL TO LOCAL CONTRIBUTIONS 

 The first thing we need to understand is whether we need 
global molecular descriptors in QSAR/QSPR. Why not di-

rectly to use local descriptors defined for atoms or bonds? If 
we were interested in studying congeneric sets of organic 
compounds there is no difficulty in relating the property P
to atomic or bond parameters of the compounds under study.  

 The problem arises when we attempt to study heteroge-
neous datasets of organic molecules. In this case there is not 
necessarily an atomic/bond pattern which is repeated in all 
the molecules under study. As a matter of example lets con-
sider a dataset which contains an alkane, an , -unsaturated 
aldehyde, and an aromatic amine. Then we have not a com-
mon atom or bond for which we can calculate the atomic/ 
bond parameter which will be related to the property P . As a 
consequence we have to use molecular descriptors like the 
electronic chemical potential, the molecular electronegativ-
ity, the chemical hardness, or other global molecular indices 
[12]. 

 This question immediately poses another, which is 
whether we can obtain structural information at a local scale 
from the models developed using global molecular descrip-
tors. The only information that we need to transform the 
global model into the atomic/bond contributions is the 
mathematical relationship between the global molecular de-
scriptor and the local contributions.  

 A possible strategy to account for this aspect of molecu-
lar complexity is to use descriptors based on a graph theo-
retical representation of molecules. The great advantage of 
using graph theory based molecular descriptors [18] is that 
we can always obtain a mathematical relationship between 
the global index and the structural molecular fragments. This 
connection is guarantied by the Baskin et al. [19] theorems, 
which prove that any topological index can be uniquely rep-
resented as i) a linear combination of occurrence numbers of 
some structural fragments, both connected and disconnected, 
or ii) a polynomial on occurrence numbers of connected 
substructures of the corresponding molecular graph. Then, 

Fig (1). Isomers of trichlorobenzene and its n-octanol/water partition coefficients experimentally determined, as well as the spectral moments 
of the hydrophobicity matrix and toxicity values for polar narcosis to Daphnia magna at 48 h (Log(1/EC50).
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we can build efficient ways of transforming global descrip-
tors/properties into local distribution maps. 

6. A TOP-DOWN APPROACH TO QSAR/QSPR 

 In the last few years the TOPS-MODE approach to 
QSAR/QSPR has been developed to account for the contri-
butions of molecular parts to the global molecular properties 

[20]. TOPS-MODE (Topological Sub-Structural Molecular 
Descriptors/Design) is based on the spectral moments k w( )
of bond matrices [20], where w  represents the weights used 
in the diagonal of the matrices, to account for hydrophobic-
ity, polar surface area, polarizability, molar refractivity, van 
der Waals radii, and electronic charges. 

Box 2. 

Box 2 | Calculation of bond contributions  
 Using a QSPR model for the molar refraction of alkanes [50] we 
calculate bond contributions for the molecule of 2,2-dimethylbutane with 
the bond numbering given in the figure. The total spectral moments can 
be expressed as sum of bond spectral moments of the form: 
 
 

 
In terms of the eigenvalues �j of the B matrix and the corresponding eigenvectors vj(i) the local 
spectral moments can be expressed as 
 
 
 
The bond spectral moments for the bonds of this molecule are as follows: 

Bond/�k k=0 k=2 k=3 k=4 
1 1 3 6 22 
2 1 3 6 22 
3 1 3 6 22 
4 1 4 6 24 
5 1 1 0 4 

Now we will substitute these expressions into the QSPR model obtaining bond molar refractions 
as exemplified for bond 1: 
 

 
In a similar way the bond contributions of the other bonds are 
obtained and graphically visualized. It is clear that the sum of 
these bond contributions plus the intercept of the QSPR model 
(13) gives the value of the molar refraction of the molecule: 
30.026 cm3. 
Bond contributions for the other three hexane isomers are given 
below: 
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 This approach has been applied to the study of chroma-
tographic [21], diamagnetic, magneto-optic properties [22] 
and the permeability coefficients through low-density poly-
ethylene [23] of organic compounds as well as the soil sorp-
tion coefficients for pesticides [24]. Many studies have re-
ported the application of TOPS-MODE in QSAR and drug 
design, which include the design of new sedative/hypnotic 
[25], anticonvulsant [26], anticancer [27], antiinflamatory 
[28], herbicides [29], antibacterial [30], and central nervous 
system activity [31]. Other studies reported the design of 
anti-HIV nucleosides [32, 33], antioxidants analogues of 
compounds in Brazilian propolis [34], adenosine receptors 
inhibitors [35], and antifungal compounds [36]. 

 TOPS-MODE has been applied to predict ADMET (Ad-
ministration, Distribution, Metabolism, Excretion and Toxic-
ity) parameters of drugs and drug-like compounds. They 
include the physicochemical, absorption and pharmacokinet-
ics properties of 6-fluoroquinolone derivatives [37], the pre-
diction of blood-brain barrier permeation [38], human intes-
tinal absorption [39], binding to P-glycoprotein substrates 
[40], and binding of drugs to human serum albumin [41]. 
Other works have been devoted to the understanding of skin 
sensitization mechanisms [42, 43], the study of mutagenic 
activity in dental monomers [44], the prediction of rodent 
carcinogenicity [45], the prediction of nitrocompounds car-
cinogeneicity [46] and the study of chromosome aberrations 
produced by drugs and drug-like compounds [47]. The pre-
diction and understanding of the behaviour of organic 
chemicals in the environment or human health after the ex-
position of diverse doses of such compounds has also been 
studied by using TOPS-MODE [48, 49]. 

 An important question related to this method is related to 
its top-down nature. The three theorems of Baskin et al. [19] 
previously mentioned were proved for labelled graphs, that is 
for graphs in which vertices and/or edges are weighted by 
some real numbers. Consequently, they assure that we can 
always obtain a linear combination of the TOPS-MODE de-
scriptors in terms of structural fragments of the molecules 
under study. The general strategy for obtaining local contri-
butions from global spectral moments is illustrated in the 
Box 2. In closing, we can say that if any structure-property 
data is sufficiently large to allow building statistically sig-
nificant models with TOPS-MODE descriptors, then we can 
express this property as an additive function of bond contri-
butions.

7. APPLICATIONS TO THE QSAR/DRUG DESIGN  

7.1. Skin Sensitization of Organic Compounds 

 The potential of a chemical to develop skin sensitization 
in humans is of tremendous importance for the topical appli-
cation of such substance. Skin sensitization is an important 
aspect of the allergic contact dermatitis, which is produced 
as a complex process involving the stimulation of the im-
mune system producing an inflammatory response in the 
skin. Using TOPS-MODE we have developed a quantitative 
model which predicts the potential of an organic compound 
to develop skin sensitization. The training set used to de-
velop this model was formed by 93 organic molecules of 
different classes, which include alkyl halides, aldehydes, 
amides, esters, ketones, nitriles, nitrocompounds, aromatic 

amines, phenols, sulfides, among others. This structural het-
erogeneity obligates to use global molecular descriptors like 
the TOPS-MODE ones. The model developed classifies these 
compounds according to their potencies as strong/moderate, 
weak and extremely weak/non-sensitizers [42]. Using this 
global structural information we have obtained the bond con-
tributions for all chemical bonds in the molecules studied. In 
the Fig. 2 we illustrate some of these contributions for the 
bonds identified as responsible for the skin sensitization of 
two aromatic amines and two aldehydes [42, 43]. 

Fig (2). Visualization of the bond contributions to skin sensitization 
of a primary and a secondary aromatic amine as well as for a satu-
rated and an , -unsaturated aldehyde according to the predictions 
made using TOPS-MODE. Gray spheres correspond to positive 
contributions to skin sensitization, some of them display the contri-
butions. Black spheres correspond to negative contributions.

 The information about the groups having a positive con-
tribution to the skin sensitization has been used to propose 
structural alerts based on the presence of certain toxicopho-
res in the molecules to be analyzed [43]. Søsted et al. [51] 
used this model for ranking 229 hair dye substances accord-
ing to their predicted skin sensitization potency. None of 
these substances was previously included in our models. 
Recently some of these predictions of skin sensitizers have 
been confirmed experimentally [52, 53]. 

7.2. Chromosome Aberration of Organic Compounds 

 We have recently used TOPS-MODE to generate struc-
tural alerts that predict the clastogenic potential of an organic 
molecule [47]. Clastogens, which are chromosome breaking 
chemicals, can induce chromosome aberrations by different 
mechanisms. These mechanisms include DNA alkylation, 
inhibition of deoxyribonucleotide synthesis, denaturation or 
degradation of DNA, production of labile DNA by chemical 
reaction and/or incorporation of abnormal precursors as well 
as removal of DNA bound metals [47]. Our strategy to gen-
erate structural alerts consists in identifying those molecular 
“positive” regions which are repeated in several molecules. 
Positive regions refer to those having positive contributions 
to the property/activity under consideration. These structural 
alerts can be easily implemented in expert systems for the 
prediction of toxicity or biological activity. In this study we 
have used a data set of 383 organic compounds which were 
classified as clastogenic/non-clastogenic [47]. Using this 
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information we have generated 22 structural alert rules, 
which include those for N-nitrosoureas, N-nitrosourethanes, 
nitro compounds, alkyl esters of phosphoric acids, alkyl 
methanesulfonates, epoxides, amines, phenols, urethanes, ,

- unsaturated carboxylic acids, amides, esters and ketones, 
among others. In Fig. 3 we illustrate some N-nitrosoureas 
which are included in the dataset. In addition we also illus-
trate the strategy followed for the generation of the structural 
alert found for these compounds [47].  

Fig (3). Illustration of the structural alert generation process. In 
clear/dark we have marked those regions which are predicted to 
have/not-have a positive contribution to the chromosome aberra-
tion. A structural alert is obtained by the maximal common frag-
ment which is present in the majority of the structures studied, 
which here corresponds to the N-nitrosamide moiety.

7.3. Drug Binding to Human Serum Albumin (HSA) 

 HSA is the most abundant protein in plasma, which is 
known to form mainly non-covalent complexes with exoge-
nous ligands. Most of the drugs that bind to HSA form com-
plexes in which the drug is located at one of the two main 
binding sites of HSA. The drug site I has a predominantly 
apolar interior with two polar clusters. The drug site II con-
sists of a largely hydrophobic cavity with distinct polar fea-
tures. In this study a robust QSAR model was obtained by 
using the TOPS-MODE approach for 78 drugs in the training 
set and 10 others used for prediction [41]. Following our top-
down approach to QSAR/QSPR we have calculated the bond 
contributions to the drug-binding to HSA for the 88 mole-
cules studied. These bond contributions were transformed 
into the contributions of fragments or functional groups. The 
sum of contributions for all bonds forming the fragment is 
considered to be the fragment’s global contribution. In this 
way, we have calculated the contribution of 65 different 
groups to the drug-HSA binding. The contribution for the 

same group in different molecules is averaged and reported 
as the group contribution for this specific fragment inde-
pendent of the molecule in which it is located.  

 A perfect agreement exists between the group/fragment 
contributions found by TOPS-MODE and the specific inter-
actions of drugs with HSA [41]. These results indicate a pre-
ponderant contribution of hydrophobic regions of drugs to 
the specific binding to drug binding sites 1 and 2 in HSA and 
specific roles of polar groups which anchor drugs to HSA 
binding sites. For instance, warfarin is a drug that binds to 
site I. In Fig. 4 we show the contributions to the HSA-
binding for the main groups of this drug [41]. TOPS-MODE  

Fig (4). A) Illustration of the contributions of fragments to the in-
teraction of warfarin at the drug binding site I of HAS. B) Interac-
tions of carbonyl and hydroxyl oxygen atoms of warfarin with resi-
dues of HSA. In black dotted lines are the hydrogen bonding 
formed with R222 and H242 which stabilize the HSA-warfarin 
complex. In gray dotted lines are the hydrophobic-hydrophilic and 
oxygen-oxygen repulsion, which destabilize the warfarin-HSA 
complex.

identifies the main contributions of the hydrophobic moie-
ties, which are located at major hydrophobic pockets of the 
protein as well as the electrostatic interactions between the 
oxygen of the hydroxyl and carbonyl groups. These groups 
form stabilizing hydrogen bonds as well as destabilizing in-
teractions with the residues of binding site I. In closing, the 
top-down approach based on TOPS-MODE fits very well 
with the experimental molecular models for the drug-HSA 
interactions, which illustrates its utility beyond the classical 
QSAR/QSPR applications. 

8. CONCLUDING REMARKS  

 The complexity of the molecular structure depends on the 
scale used for its description. In general, as we get to very 
large scales the complexity of the description is significantly 
low. However, as we get further and further by reducing the 
scale, the complexity increases non-linearly in a dramatic 
way. This is exactly what happens when we use different 
molecular descriptors for studying the molecular structure. 
At very large scales we can represent a molecule by a single 
dot, if we are interested only in their statistical mechanic 
properties. As we reduce the scale we can represent the 
atoms and bonds as nodes and links of a simple graph. Then, 
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we can analyze any of the properties which arise as a conse-
quence of the connectivity pattern of a molecule. At this 
level we are investigating the “topological world” of the 
molecular structure. The complexity of this description is 
large enough compared to the previous representation, but it 
is tiny in comparison with that obtained by reducing the 
scale up to the “quantum world”. At this scale we study the 
internal nature of the atoms and bonds, which increase 
considerably the complexity of the system. But, think about 
the complexity of reducing even more the scale and “see” the 
simultaneous movement of the electrons, vibration of atoms 
and so forth. In Fig. 5 we represent the complexity as a 
function of scale for the molecular structure. 

Fig (5). The place of topological and quantum worlds in the com-
plexity-scale plot. The TOPS-MODE is expected to occupies an 
intermediate position.

 On the topological side of the scale we make emphasis 
on the way in which the parts of the system are organized. 
On the other extreme we make emphasis on the nature of 
such parts, e.g., atoms, bonds, electrons, etc. However, it has 
been stated that “a system can be fully understood in terms of 
its parts and the interactions between them” [54] by recog-
nizing that such interactions “often lead to global patterns of 
organization that cannot be traced to the particular parts”
[8]. The TOPS-MODE approach is a sort of intermediate 
state, or using a physicists language it is a sort of “meso-
scale” description of the molecular structure. In this approach 
we use information at the local scale, such as bond properties, 
which indeed can also be extracted from the quantum world. 
Then, this information is combined in a topological way to 
extract the information arising from their interrelationships. 
As a consequence, we have placed the TOPS-MODE some-
where in between the topological and the quantum worlds. 
Of course, it is possible that other intermediate approaches 
like this exist and there are enough places in the plot to 
locate them. TOPS-MODE has been recognized as a useful 
tool to investigate practical problems related to the molecular 
structure. For instance, it has been recognized that this ap-
proach “provides a mechanistic interpretation at a bond 
level and enables the generation of new hypotheses such as 
structural alerts” [55]. Thus the use of top-down approaches 
to the study of molecular structure is not only useful but also 
a necessary approach in chemistry. 
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